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Abstract

Analysis of software fault trees exposes failure events that can impact safety within safety-critical software product lines. This paper
presents a software fault tree key node safety metric for measuring software safety within product lines. Fault tree structures impacting
the metric’s composition are provided, and the mathematical basis for the metric is defined. The metric is applied to an embedded control
system as well as to a series of experiments expected to either improve or degrade system safety. The effectiveness of the metric is
analyzed, and lessons learned during the application of the metric are discussed.
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1. Introduction

Safety-critical software systems are capable of entering
hazardous states with the potential of causing the loss or
damage of life, property, information, mission or environ-
ment (Leveson, 1995). Fault Tree Analysis (Vesely et al.,
1981; Villemeur, 1991; Henley and Kumamoto, 1981) sup-
ports examination of safety-critical systems by assessing
failure statistics to examine probable effects of contributory
system component failures. Such analysis focuses on a haz-
ard event or condition which serves as the root of a fault
tree. Fault trees are expanded from the root downward
in an effort to identify the system component failures at
the leaves of the tree that need to exist in order to allow
entry into the root’s hazardous state. Fault tree analysis
has been applied to software (Dugan et al., 1992, 1999;
Leveson, 1986, 1991; Lutz, 2000), including UML-based
techniques (Pai and Dugan, 2002; Towhidnejad et al.,
2003) for using software fault tree analysis (SFTA) in the
requirements and design phases of a system’s development.
Support for analysis of software safety at design time using
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knowledge of the system derived from software fault trees
has also been the focus of recent work with software prod-
uct lines (Lutz, 2000; Dehlinger and Lutz, 2006).

Clements and Northrop identify software product lines
as systems that share features developed from a common
set of core assets to meet specific needs within a market seg-
ment (Clements and Northrop, 2002). Safety-critical prod-
uct line systems, such as the Ariane 4 control software
catastrophically reused in the European Space Agency’s
Ariane 5 rocket (Sommerville, 2004), provide a rich field
in which to apply SFTA. Recent work in this area by Lutz
and Dehlinger applies SFTA to product lines in an effort to
improve software reuse within such safety-critical systems,
leading to the development of analysis tools such as
PLFaultCAT (Lutz, 2000; Dehlinger and Lutz, 2006).
The PLFaultCAT tool derives reusable fault trees from
the safety analysis of a product line’s members for use with
future systems.

This paper provides a metric for objectively comparing
the safety represented by the structure and composition
of software fault trees with the same root hazard, such as
those found in product lines. We expand on our previous
work (Needham and Jones, 2006) by examining experi-
ments conducted in applying the metric to product lines
and considering the lower and upper bounds of the metric.
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Section 2 discusses background information including soft-
ware fault tree construction, software metrics, product lines
and related work. Section 3 presents the basis and mathe-
matical foundation for a software fault tree key node safety
metric. Section 4 examines an application of the metric to
an embedded, safety-critical system. Section 5 applies the
metric to a set of experiments and considers the metric’s
upper and lower bounds. Section 6 provides lessons learned
in applying the metric, and finally, Section 7 presents con-
clusions and considers areas of future work.

2. Background

This section reviews software fault tree construction,
examines the role of metrics in measuring internal and
external software qualities, and discusses product lines
and other related work.

2.1. Fault trees

The root of a fault tree specifies a hazard event which
can be analyzed from the perspective of risk reduction. A
hazard event is any event in a safety-critical system that
has the potential of causing a variety of undesirable results
such as loss of life, equipment, unacceptable loss of func-
tionality, or undesirable operating conditions. Symbols
found in typical software fault trees are shown in Fig. 1.
The leaves of a fault tree represent the fundamental events
(inputs) of the system. The root and leaves are connected
by a series of intermediate events through boolean opera-
tors such as AND and OR as shown in Fig. 2.

Intermediate events are themselves boolean expressions,
thereby allowing an entire tree to be expressed as a com-
posite boolean expression. When probabilities for the leaf
elements are inserted into the composite boolean expres-
sion describing the system, a probability of occurrence
can be determined for the hazard specified at the root of
the tree.

In Fig. 2, the leaf nodes are labeled d, e, f, and g and the
internal nodes are «a, b, and ¢ with node a also being the

Rectangle indicates an event
to be analyzed further

OR gate indicates that one or
more inputs events are required
to produce the output event

AND gate indicates that all
input events are required to
cause the output event

Circle represents a basic fault
event or primary failure of a
component, and no further
development is required

O
(]
O

Fig. 1. Basic software fault tree symbols.
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Fig. 2. Sample fault tree.

root of the tree. In order for node b to enter a failure state,
both nodes d and e must fail since they are connected to
node b via an AND gate. For node ¢, since it is connected
to nodes fand g with an OR gate, the failure of either node
for g causes node ¢ to enter a failure state. Node « is sim-
ilar to node c¢ in that either nodes b or ¢ can fail thus cre-
ating a failure condition. When node « is in a failure
condition, the hazard described by the fault tree occurs.

If the probability of occurrence of the leaf node events
are either known or can be estimated, a composite boolean
expression can be constructed to determine the probability
that the system will enter the hazard state represented by
the root of the tree. For example, consider the left sub-tree
of Fig. 2 involving the AND gate connecting nodes b, d,
and e. Eq. (1) represents the boolean expression for the
sub-tree rooted at b since the event specified by node b
occurs only if both the node d event and the node e event
occur. In (1), the failure probability of the two children,
d and e, are multiplied together because the probability
of an AND system entering the state at its root requires
both nodes to fail.

Pb(d7€) :PdPg (1)
Pe(f,8) = 1= (1 =Py)(1 = Py) 2)
Pa(bvc)zl_(l_Pb(d7e))(1_Pc(fag)) (3)

The right sub-tree of Fig. 2 shows an OR gate connecting
nodes ¢, f, and g, and is modeled by (2) since the event spec-
ified by node ¢ occurs if either, or both, of the events in
nodes f or g occur. Since an OR system has the opposite
probability relation of an AND system, the minus terms
are required for input probability consistency (Vesely
et al., 1981). The left and right sub-trees of Fig. 2 are joined
by another OR gate, therefore the probability of the root
event occurring can be constructed as the composite bool-
ean expression modeled by (3).

2.2. Software metrics

Software engineers use metrics to evaluate internal soft-
ware qualities, such as size or structural complexity, as well
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as to measure external traits like reliability. Early 1960s
software metrics, such as Lines of Code, were based on
the concept of program length, and included variations
such as thousands of lines of source code, object code,
and assembly code (Fenton, 1998). In the 1970s, several
major advances in the area of software metrics were made,
including McCabe’s Cyclomatic Complexity Metric, focus-
ing on a program’s control flow, and Halstead’s Software
Volume Metric, focusing on the number of operands and
operators (Halstead, 1977; McCabe, 1976). In the 1980s,
software engineers began to focus on two diverse areas:
dynamic methods of verification such as software fault
injection in which incorrect source code is intentionally
inserted into a program (Voas and McGraw, 1998), and
formal methods such as program proving. Metrics are
more closely aligned with formal methods because they cal-
culate a value based on the intrinsic characteristics of a
program rather than the trial and error methods typical
of dynamic testing.

Weyuker developed a list of nine properties to be used
as a foundation for comparing and evaluating software
complexity metrics (Weyuker, 1988). Although not suffi-
cient in and of themselves as stressed by Fenton (1994),
Weyuker’s properties can be used as a sounding board
for the development of a new metric. For example, Weyu-
ker’s Property 4 essentially states that even if the function-
alities of two different class diagrams are the same, their
inherent complexities might be different. This property cor-
responds with our approach to comparing software fault
trees that have the same root hazard but different internal
structures.

2.3. Related work

For safety-critical systems, the hazard at the root of the
fault tree typically represents a known, system-wide, cata-
strophic event often taken from either a preexisting (Leve-
son, 1995) or constructible (Douglass, 1999) list of hazards.
When the specific hazardous state at the root of the tree is
not known, techniques such as Failure Modes and Effects
Analysis (Stamatis, 1995) for hardware and Software Fail-
ure Modes and Effects Analysis (Reifer, 1979) for software
can be used in a bottom up fashion to identify the set of
possible hazardous states for a system. Leveson emphasizes
using the results of software fault tree safety analysis as a
technique for identifying safety constraints that must be
met by the software’s requirements (Leveson, 1991). Han-
sen provides a dynamic linking model allowing software
safety requirements to be derived from a system’s safety
requirements (Hansen et al., 1998).

Once a fault tree has been constructed, the system under
investigation can be analyzed using fault tree analysis tech-
niques such as minimal cutset analysis (Raheja, 1991)
which seeks a minimum set of successful events sufficient
to satisfy the fault tree root. An alternative approach
(Manian et al., 1998) combines Binary Decision Diagrams
(Coudert and Madre, 1994) with Markov solutions result-

ing in a divide-and-conquer technique for modularizing the
system level fault tree into independent sub-trees. When
leaf node failure probabilities are not known, fault tree
analysis typically proceeds by assuming equal fault proba-
bilities for leaf nodes thereby allowing investigation of the
effect of a fault tree’s structure. The metric presented in this
paper assumes that fault trees have already been con-
structed, and provides a technique for evaluating the safety
level represented by a fault tree’s internal structure without
regard for leaf node failure probabilities. With our metric,
assigning uniform failure probabilities to leaf nodes is
unnecessary since the metric focuses on the inherent safety
represented by the fault tree’s internal structure rather than
the impact of leaf node failure estimates. Unlike minimal
cutsets and Binary Decision Diagrams, our metric consid-
ers the impact of key nodes based on sub-tree composition
and location, and can be used to evaluate the impact on
system safety resulting from changes made to a fault tree’s
internal structure.

Lutz and Dehlinger argue that software fault trees,
gained from the initial engineering of a new product line,
can be partially applied to any new product line member
since product lines share their underlying architecture,
requirements, and safety analyses (Clements and Northrop,
2002; Lutz, 2000). Their work on safety-critical product
lines analysis includes the PLFaultCAT tool (Dehlinger
and Lutz, 2006) used to derive reusable fault trees from
safety analyses of product line members for use in future
systems. The metric presented in this paper adds a tech-
nique for comparing fault trees within such product lines
since the metric requires that the fault trees being com-
pared share a common root hazard.

Scotto’s work on relational software metrics provides an
abstraction layer to aid in decoupling the information
extraction process from the use of the information (Scotto
et al., 2004), and is similar to the metric presented in this
paper. Both approaches use intuitive relations to describe
the structure of the software system, however, Scotto’s
approach relies on the structure of source code. Our
approach can be applied at design time whenever a fault
tree has been derived from a product line (Lutz, 2000; Deh-
linger and Lutz, 2006) or UML representation of a system
(Pai and Dugan, 2002; Towhidnejad et al., 2003), and is
similar to Nagappan’s work on estimating potential soft-
ware field quality during the early development phases
(Nagappan et al., 2005).

3. A key node safety metric

The Key Node Safety Metric is based on identifying
“key nodes” within a fault tree and considers the impact
of these nodes on the safety of the system as per the follow-
ing definition:

Definition 3.1. A key node is a node in a fault tree that
allows a failure to propagate towards the tree root if and
only if multiple failure conditions exist in the node.
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Analysis of typical boolean relationship types, such as
AND, XOR, and OR, shows that the AND relationship
meets the key node requirement since all inputs must fail
in order for the hazard to propagate when nodes are con-
nected by an AND gate. The XOR relationship condition-
ally meets the key node requirement since a single failure
condition causes the failure to propagate, while multiple
simultaneous failures block the hazard’s propagation.
Unlike the XOR or AND relationships, the OR relation-
ship fails to meet the requirements of a key node since if
any one or more inputs enter a failure state, the hazard
propagates to the next level. The AND relationship always
qualifies as a key node, and is the relationship type focused
on as a key node in this paper.

3.1. Basis for the key node safety metric

This section discusses the basis for determining the
safety level, S, produced by the Key Node Safety Metric’s
application to a software fault tree. The following defini-
tions are used to create the metric equation:

Definition 3.2. A simple path is a path between two nodes
of a fault tree that contains no cycles.

Definition 3.3. The height of a tree, 4, is defined as the
number of edges on the longest simple path from the root
to a leaf.

Definition 3.4. The depth of a node, d;, is defined as the
number of edges from the root to node i.

Definition 3.5. The size of sub-tree, ¢;, is defined as the
number of nodes in the tree rooted at node 7, not including
node 7.

Definition 3.6. The size of the sub-tree of a leaf, cieuy, 1S
defined to be 0.

Definition 3.7. The size of the sub-tree of the root, ¢;qor, 1S
defined to be n — 1, where n is the number of nodes in the
tree.

Definition 3.8. The depth of the root of a tree is defined as
droot =0.

The following definitions are given to prevent possible divi-
sions by zero:

Definition 3.9. d; =d,; + 1.

Definition 3.10. /' =h+ 1.

The Key Node Safety Metric is divided into two seg-
ments. The first, the overall tree segment, ts, considers
the number of key nodes. The second, the collection of
individual key node segments, ns;, factors in the properties
of each key node. The properties of a key node include its
depth from the tree root, and the size of the sub-tree rooted

locally to the key node. A key node that forms the local
root of a relatively large sub-tree is expected to provide a
greater amount of fault tolerance because it requires a
greater number of failure events to occur before the hazard
at the key node can occur. Both the depth and size of the
local sub-tree rooted at a key node are included in the met-
ric since it is possible that a fault tree will be unbalanced,
and a node with a lesser depth will not necessarily have a
larger sub-tree.

The tree segment, ts, of the metric compares the number
of key nodes (k) and the total number of nodes in the tree
(n):

k
ts = , 4)
The individual node segment, ns;, accounts for the relation-
ship between the relative depth of a key node, (n)(d}), and
the relative size of the sub-tree rooted at that key node, 4'c;.
The value for ns; is given as
h,C,‘

" ) ®
The compilation of the individual node segments creates
the total node segment, ns:

k—1 h/cl'
ns = ; n_d: (6)
Combining ts and ns yields an initial form of the metric:
ks K
t == ; 7
(s)ms) =7 > ™)

i=0

Simplifying the initial form and combining with Spax,
where Spax (further discussed in Section 5.3) is the initial
form of the metric applied to the tree altered such that
every node is a key node, gives the final form of the metric.
The final form of the metric, S, produces a normalized re-
sult within the range 0-1 inclusive:
w3 g

S B Smax (8)
Except where otherwise noted, (8) is the form of the Key
Node Safety Metric used to compute the S values for soft-
ware fault trees throughout the remainder of this paper.

3.2. The role of key nodes

Design changes within product lines impacts a system’s
safety. The Key Node Safety Metric provides a design tool
for comparing fault trees without requiring a priori knowl-
edge of component reliability. The metric allows designers
to evaluate aspects of system safety before final component
selection, or completion of component reliability studies, by
evaluating key nodes within a fault tree’s structure. The
ability to improve system safety without knowledge of
component reliabilities is useful when “typical” component
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reliability values for a component are unavailable or
unpredictable.

4. Applying the key node safety metric

This section applies the Key Node Safety Metric to a
safety-critical software system. The software fault tree for
an embedded system hazard is developed, and the metric
is applied to determine the system’s initial safety value
for the hazard. The hazard is then used as the initial fault
tree within a series of tree mutations representing a product
line in Section 4.2.

4.1. An autonomous underwater vehicle

To promote undergraduate interest in autonomous
underwater vehicle (AUV) systems, the Association for
Unmanned Vehicle Systems International and the Office
of Naval Research jointly sponsor an annual AUV compe-
tition (AUVSI, 2006). The competition varies from year to
year, and typically includes tasks such as measuring and
mapping the bathymetry of the seafloor, identifying the
shallowest item in an array of man-made objects, or search-
ing for and navigating towards acoustic signatures. Each
year, a team starts out by either modifying its previous
year’s entry, or by building a newly designed AUV system
from scratch. This paper considers software product line
families developed by computer science students as control
software variants for the Naval Academy’s AUV shown in
Fig. 3.

The four small cylinders in Fig. 3 are reversible marine
motors. The port and starboard motors provide horizontal
control and the forward and aft motors provide depth con-
trol. The lower medium-sized cylinder houses the batteries
and the upper medium-sized cylinder contains device driv-
ers, a PC-104 plus processor, and various sensor control-
lers. The two long cylinders at the top provide flotation.

The AUV’s control software navigates by invoking con-
trol sequences based on sensor device driver data and send-
ing motor commands to the motor device drivers. A UML
class diagram giving a portion of the AUV controller

Fig. 3. Autonomous underwater vehicle.

software hierarchy is shown in Fig. 4. The AUV Controller
class provides communication for the control logic of the
system, and launches user-level threads for querying sensor
data and motor control settings and logging sensor data.

4.2. Applying the metric to an AUV hazard

For our example, we consider the hazard of the AUV
failing to surface, as represented by Fig. 5. Calculating
the Key Node Safety Metric’s S value for the fault tree is
straightforward. First, Sy, is computed using (7) and a
post-order traversal of the tree altered such that every node
is a key node:

Tx5<83 2 4
3

B L2 2 17
18 &2 2" 3

6 5
2+§+_+T:2'86 9)
Next, the S value of the initial tree, Si,ia 1S computed
using (8). The three key nodes of the fault tree in Fig. 5
are labeled ko, k{, and k; to aid in the following discussion.
The values for the variables in (8) for this fault tree are:

k=3 the number of key nodes in the fault tree shown in

Fig. 5

W' =35 the height of the fault tree + 1

n =18 the number of nodes in the fault tree

¢co=2 the number of nodes in the sub-tree rooted at
keynode k

dy =4 the depth of keynode ko + 1

¢y =6 the number of nodes in the sub-tree rooted at

keynode k&
d} =2 the depth of keynode k; + 1

¢; =2 the number of nodes in the sub-tree rooted at
keynode k&,
dy =3 the depth of keynode k, + 1

Using these values, (8) applied to Fig. 5’s initial fault tree,
with S),.x computed as 2.86, becomes:
3%5N\3-12 5, 64 2
182 £ai=0 4 23

S —286 0.07 (10)
The Key Node Safety Metric’s Siyjia value of 0.07 for the
fault tree shown in Fig. 5 gives a comparison point from
which to examine the impact of subsequent fault tree vari-
ations for the AUV’s failure to surface hazard. The S value
computed by the metric for an initial tree can be compared
with the S value computed for a mutation of the initial tree.
As an example, Fig. 6 shows the same fault tree from Fig. 5
except that the shaded node has been mutated from an OR
node into an AND node. Such a mutation is expected to
result in a tree with an increased S value, since the mutated
node was converted into a key node. Applying (8) to the
fault tree mutation in Fig. 6 results in:

Sinitial =

45N 412 6,2, 4
w20 8T gy (11)
Smax = 2.86

S mutated —
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Fig. 4. Autonomous underwater vehicle controller UML class diagram.

AUV surfacing
failure

1
targeted depth
too deep
processor || battery | flotation depth buoyancy [ = 1
hull leak |hull leak| hull leak | | change trim depth || invalid | | invalid
O failure failure sensor depth depth
failure | |targeted | | vector
O
———— ko
battery depth motor
failure failure
invalid invalid
ko direction distance
vector vector
fore (aft) depth ||aft (fore) depth O O
motor failure motor failure
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Fig. 5. Fault tree for AUV surfacing hazard.

i
&%&'&%
S

Fig. 6. AUV fault tree after mutation.

As shown in (11), applying the Key Node Safety Metric to
the mutated tree results in an Speq value =0.12. As

compared with Sinigial, Smutated’ S Increased value confirms
that the mutated tree has a higher safety prediction than
the initial tree as a result of changing the OR gate to an
AND gate.

5. Experiments

This section discusses experiments in applying the Key
Node Safety Metric including the impact of a key node’s
position within a fault tree and the size of a key node’s
sub-tree, improving and degrading product line mutations,
and the upper and lower bounds of the metric.

5.1. Key node position

The effectiveness of the metric was evaluated by applica-
tion to a series of fault tree mutations representing a
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product line (Clements and Northrop, 2002). As shown in
Fig. 7, the set of fault trees mutations was based on trees
with the same number of total nodes, underlying fault tree
structure and root hazard.

Each fault tree mutation involved changing a single OR
node into an AND node. In each case, the AND node
introduced via the mutation was the only key node in the
resultant tree. The only node not mutated into a key node
was the root of the fault tree. Each tree in Fig. 7 contains
20 nodes. There are four edges on the longest simple path
from the root to a leaf node, resulting in a tree height
(h') of five for the purposes of the metric. Nodes were
selected for mutation into a key node for each tree in the
set based on a post-order tree traversal. After each muta-
tion, the Key Node Safety Metric from Eq. (8) was applied
to determine the safety value of the mutated fault tree,
thereby allowing comparison of the impact of each key
node mutation. Since all the trees are identical except for
their key node’s position, the trees’ S values may be used
to evaluate the impact of a key node’s position and sub-tree
size within the tree. For example, the fault tree with the
root node labeled a in Fig. 7 contains a single key node,

pointed to by the arrow, two levels below the root node
at a d; level of 3 with a sub-tree, ¢;, consisting of two nodes.
Applying (8) to tree(a) in Fig. 7 results in the following
equation, with Table 1 showing the result of applying the
safety metric to each of the trees in Fig. 7:

R
Stree(e) = ﬁ =0.01 (12)

Fig. 8 compares the ratio of sub-tree/tree size and respec-
tive .S value of each of the tree mutations ordered by key
node sub-tree size. As shown in Fig. 8, the impact on a
fault tree’s safety level resulting from a key node mutation
is primarily dependant on the size of the sub-tree rooted at
the key node.

5.2. Improving and degrading mutations within product lines

The Key Node Safety Metric was evaluated in terms of
improving and degrading mutations by comparing 70 fault
trees organized into 10 sets of seven trees as summarized in
Table 2. Each set is similar to a product line (Clements and
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Fig. 7. Varying a key node’s locations within a software fault tree.
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Table 1
Varying key node locations

Tree ¢ di ¢ G Node segment Safety value (.S)
a 2 3 067 0.10 0.17 0.01
b 5 2 250 0.25 0.63 0.03
¢ 2 4 0.50 0.10 0.13 0.01
d 4 3 133 020 0.33 0.02
e 6 2 3.00 030 0.75 0.04
f 2 3 0.67 0.10 0.17 0.01
g 5 2 250 0.25 0.63 0.03

0.35

0.30 A ,

//
///
0.25 41 ratio of of key node subtree T .
size to overall tree //
0.20 A '//
/
/
/
0.15 - J/
/
/
//
0104 —----- — 7
safety value (S
0.05 - Y ®)
0.00 \—//—-//
2 2 2 4 5 5 6

Fig. 8. Ratio of sub-tree to tree size and respective S values.

Table 2
Summary of initial trees

Set Total Key Internal Maximum  Minimum  Spax
nodes nodes  nodes depth depth
1 12 2 5 3 2 2.38
2 14 3 6 3 2 2.37
3 14 3 6 3 2 1.96
4 19 4 8 5 2 4.10
5 24 3 10 4 3 3.48
6 22 5 9 4 2 3.20
7 19 3 8 3 2 2.39
8 18 3 7 4 2 2.86
9 27 4 12 5 2 4.53
10 37 5 16 5 2 3.74

Northrop, 2002; Dehlinger and Lutz, 2006) and consists of
an initial fault tree, serving as the set baseline, and six
mutations of the set’s initial tree. The AUV hazard’s fault
tree shown in Fig. 5 is the initial tree of Set 8.

Within each set, three of the mutations are designed to
improve the safety of the system represented by the set’s
initial fault tree by randomly converting an OR node into
an AND node. The remaining three mutations within each
set focus on degrading safety by converting an AND node

into an OR node. For all mutations within a set, the root
node was left unchanged.

The exchange of an OR node with an AND node is
expected to increase system safety, as measured by the
mutated fault tree’s Sputatea Value relative to the set’s initial
tree’s Siniar Value, since AND nodes represent points of
fault tolerance or redundancy. Conversely, the exchange
of an AND node with an OR node is expected to decrease
system safety, realized as a lower Spyieq Value. The prod-
uct lines sets consisting of the 70 fault trees considered in
the experiments and the specific mutations within each
set, are given in (Jones, 2005). Fig. 9 shows the initial fault
tree, Set 5 from Table 2, and both a degraded and an
improved mutation of the set’s initial tree. Part (a) of
Fig. 9 is the initial fault tree, part (b) is a degraded tree,
and part (¢) is an improved tree.

Key nodes are represented as shaded nodes for each tree
in Fig. 9. Since these trees are mutations of one another,
they share the same value for Sp,.x, 3.02. The number of
key nodes, k, in the initial tree is 3, the height + 1 value
for the tree is 5, and the total number of nodes in the tree
is 20. The ratios of sub-tree size to the depth + 1 value for
each of the three key nodes are, using a post-order tree
traversal, 2/4, 6/2, and 5/2. Using the Key Node Safety
Metric, (8), Siniar for the tree is 0.08. It is important to note
that the tree mutations shown in parts (b) and (c) of Fig. 9
do not alter the root node of the initial tree, thereby keep-
ing the initial tree and its mutations within the same prod-
uct family. The degraded tree, part (b), is the result of
randomly mutating one of the initial tree’s AND nodes,
pointed to by the arrow, into an OR node, thereby adding
a key node to the tree. Likewise, the improved tree, (c),
results from randomly mutating one of the initial tree’s
OR nodes, pointed to by the arrow, into an AND node,
thereby removing a key node from the tree. Once the trees
have been mutated, the metric is run on all three trees and
the resulting S values are compared.

Table 3 shows the result of applying the safety metric
to the trees in Fig. 9. In this example, the size of the
sub-trees of each mutated node is the same (five nodes).
The mutation in part (b) of Fig. 9 was expected to
degrade the safety of the system, and results in a 37%
reduction in safety as measured by the metric, while the
improvement mutation, part (c), results in a 21% increase
in predicted safety.

For each of the 10 sets, the Key Node Safety Metric was
first run on the initial tree and then on the remaining
mutated trees in the set. After the metric was run on each
set, the results were compiled and analyzed to see if the
metric was able to determine which trees were the improved
trees and which were the degraded trees. A valid key node
safety metric should properly classify each tree as improved
or degraded when compared to the initial tree. The charac-
teristics of the initial fault trees selected for each set, sum-
marized in Table 2 included lack of balance in the trees,
ratio of key nodes to total number of nodes, and ratio of
key nodes to internal nodes.
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a Initial Tree

b Degraded Tree

c Improved Tree

Pt

Fig. 9. Representative tree mutations.

Table 3

Representative mutation results

Tree k h n 2 & & A S AS (%)
a 3 5 20 24 6/2 52 - 0.08 -

b 2 5 20 24 6/2 - - 0.03 -37

¢ 4 5 20 52 2/4 6/2 52 014 21

5.3. Metric boundaries

The lower and upper bounds of the Key Node Safety
Metric are dependent on the internal structure of the fault
tree being evaluated:

Lower bound: The metric’s lower bound occurs in fault
trees in which the failure of any single component causes
the root hazard to occur. Such fault trees would not
have any key nodes since a key node requires more than
one component to fail before the hazard propagates. In
our discussion, the metric’s lower bound would be found
in the case of a fault tree composed entirely of OR rela-
tionships. Since in this case the node segment of the met-
ric is 0, the resulting S value of the metric is Spjn = 0.
Note that the lower bound of the key node safety metric
is 0 regardless of the internal structure of the fault tree
being considered since the node segment of any such
fault tree is 0.

Upper bound: The upper bound of the metric is found in
systems which fail if and only if every component fails,
as occurs in fault trees containing only key nodes. As
an example, consider a variation of the fault tree in part
(a) of Fig. 9. If this tree were composed entirely of AND
nodes, instead of three AND nodes and five OR nodes,
the resulting S value would represent the maximum S
value of the tree. In the case, applying (7) to the tree,
altered such that it is entirely comprised of key nodes,
results in an S, of:

(13)

Since the value for S, varies according to each fault tree’s
internal structure, its role in the metric is to provide a nor-
malized value for the metric’s result within the range 0-1.
This approach allows the metric to be used in a domain-
specific manner as a relative comparator between fault
trees within software product lines to determine the impact
of changes to safety-critical components.

6. Analysis

The Key Node Safety Metric exhibited a 100% success
rate in differentiating between the improvement tree muta-
tions and the degraded tree mutations. In each case, the
metric was able to determine which mutations resulted in
a fault tree with improved safety, and which resulted in a
degradation of safety. As shown in Table 4, each degrading
mutation resulted in a lower S value, and each improving
mutation resulted in a higher S value relative to the set’s
initial tree.

There are, however, several anomalies in the data. The
largest S value is from the improvement mutation resulting
in the final tree of set 2, which has an S value of 0.57. The
tree was investigated further and found to be unique in that
it is the only test tree in which the root is also a key node.
Upon examination of the metric equation, it is apparent
that having the root of the fault tree also being a key node
has a larger impact on the tree’s S value than that of any
interior node.

Figs. 10 and 11 compare the change in S value between a
mutation and its initial tree, as ordered by the ratio of the
size of the key node sub-tree being mutated as compared to
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Table 4
Product line mutations’ S-values
Set Degradations Initial Improvements
1 0.03 0.01 0.00 0.07 0.18 0.15 0.29
2 0.03 0.05 0.05 0.09 0.19 0.15 0.57
3 0.09 0.03 0.09 0.15 023 029 0.39
4 0.03 0.05 0.06 0.09 023 0.13 0.14
5 0.05 0.03 0.03 0.08 0.12 0.12 0.13
6 0.04 0.10 0.10 0.15 022 0.19 0.21
7 0.03 0.02 0.03 0.05 0.13  0.09 0.08
8 0.01 0.04 0.04 0.07 0.14 0.12 0.12
9 0.01 0.03 0.02 0.04 0.11 0.06 0.08
10 0.04 0.02 0.02 0.08 0.15 0.11 0.11
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Fig. 10. AS for degradation mutations.
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Fig. 11. AS for improvement mutations.

the overall tree size. In both figures, the solid lines repre-
sent the ratio of the number of key nodes in a sub-tree ver-
sus the number of nodes in the tree, and the dashed lines
represent the change in the S value observed after a tree
mutation. Fig. 10 shows that as the ratio of a degrading
mutation’s key node sub-tree size to the overall tree size
increases, there is a corresponding decrease in S value as
a result of the key node mutation.

Similarly, as shown in Fig. 11, as the ratio of an improv-
ing mutation’s key node sub-tree size as compared to over-
all tree size increases, there is a corresponding increase in S
value for the tree mutation. The trend lines of both Figs. 10

and 11 indicate that the impact of the size of the sub-tree
rooted at a key node plays a major role in determining
the impact of a key node mutation on the mutated tree’s
S value, regardless of whether the mutation is a degrada-
tion or an improvement.

Finally, three of the data sets used in the experiments
contained relatively small numbers of internal nodes. As
shown in Table 2, the fault trees from sets 1, 2, and 3 each
contained fewer than 15 internal nodes. Due to the insuffi-
cient number of internal nodes in these sets, it was not pos-
sible to perform six mutations yielding unique trees
without resorting to double mutations (in which two nodes
are simultaneously changed from ORs to ANDs or vice
versa). However, these small sets served the purpose of
allowing the testing of special cases, including the case in
which a mutation results in a tree with no key nodes, and
cases involving trees with a key node at the root.

7. Conclusions

This paper presented a metric for comparing software
fault trees within product lines, providing a method of
predicting relative safety between different versions of
safety-critical software systems without requiring a priori
knowledge of component failure probabilities. The metric
was developed from a heuristical analysis of fault tree
structure, and calculates a safety value based on inherent
fault tree properties including key node height, size of
key node sub-trees, and number of key nodes. The metric
centers on the identification of key nodes that require mul-
tiple inputs to fail before the failure propagates towards the
root hazard of the fault tree. Several definitions related to a
fault tree’s structure that impact the metric’s composition
were provided, as well as an evaluation of the mathematical
basis for the metric. A example application of the metric to
an embedded system’s fault tree was conducted, including
both the initial tree and a tree mutation expected to
improve the safety of the system. Results of applying the
metric to collections of software product line fault trees
were reviewed, including mutations intended to both
degrade and improve safety. The experiments used to eval-
uate the metric demonstrated that the metric can correctly
predict which of several design variants is preferable from a
safety-critical standpoint. The effectiveness of the metric
was analyzed, and anomalies observed during the experi-
ments were examined.

Areas of future work include integrating the Key Node
Safety Metric within a software safety analysis tool such as
Lutz’s Product-Line Fault Tree Creation and Analysis
Tool (PLFaultCAT) as a means of automating the process
of applying the metric to software fault trees. Further work
is needed in the area of product lines to determine whether
the root hazard is impacted only by hazards propagating
up from the leaves of a fault tree, as is assumed here. Part
of the application of our metric to the autonomous under-
water vehicle example was performed by mutating OR
gates into AND gates and vice versa. Since an AND gate
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results in redundancy, introducing or removing such
redundancy changes the internal structure of the fault tree
itself. As part of our future work, additional applications
of the metric are required to systems in which redundancy
introduction and removal can be evaluated in terms of the
resultant tree structure and corresponding software system.
Additional research is needed in determining which rela-
tionships beyond the AND and OR nodes used in software
fault trees should be incorporated into the metric, as well as
how interdependencies between sub-trees within a software
fault tree can be modeled within the metric. While the pro-
posed safety level metric is meaningful for the domain-spe-
cific applications found within product lines, further work
is needed in externally validating the metric, addressing the
significance between S values such as 0.01 and 0.02, and in
evaluating a recommended safety level for safety-critical
software systems in general.
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